Generalizing endoscopic transfer

David Vogan

ntro

L-groups

Parameters

Examples

Generalizing endoscopic transfer

David Vogan

Harish-Chandra Centenary Conference October 9–14, 2023

Outline

Generalizing endoscopic transfer

David Vogan

Intro

-groups

Parameters

Examples

Introduction

L-groups

Langlands parameters

Endoscopic groups

Examples of endoscopic groups

Slides at

http://www-math.mit.edu/~dav/paper.html/

Introduction

Generalizing endoscopic transfer

David Vogan

Intro

_-groups

aramotor

Examples

milio

Joint work with Jeffrey Adams and Lucas Mason-Brown generalizing endoscopic transfer for reductive groups.

Our results concern real reductive groups.

Subject is a morass of technical difficulties, many of which are much worse for \mathbb{R} than for p-adic fields.

Example: need to change def of Langlands parameter/ \mathbb{R} .

I'll avoid some difficulties by discussing mostly non-archimedean local field k, and connected reductive algebraic G/k.

Avoid remaining difficulties by ignoring them.

Study rep theory of reductive algebraic *G*.

Typically G defined over a local field k, but details later.

Endoscopic group: smaller reductive H, often $H \not\subset G$.

Examples:

$$G = Sp(2(p+q), \mathbb{R}), \quad H = SO(p, p) \times Sp(2q, \mathbb{R})$$

 $G = Sp(2(p+r), \mathbb{R}), \quad H = GL(p, \mathbb{R}) \times Sp(2r, \mathbb{R}).$

Endoscopic transfer: (virtual H-reps) \rightarrow (virt G-reps).

Will define slightly larger class of such $H \not\subset G$.

New examples:

$$\begin{array}{lclcl} G & = & Sp(2(p+q+r),\mathbb{R}) & H & = & U(p,q)\times Sp(2r,\mathbb{R}) \\ G & = & GL(2p+q,\mathbb{R}) & H & = & GL(p,\mathbb{C})\times GL(q,\mathbb{R}) \end{array}$$

Harish-Chandra's work on discrete series was rooted in what Hermann Weyl did for compact groups:

(Weyl integration) + (Schur orthog) → (Weyl char formula).

Harish-Chandra's work was the same, except that every step required radically new ideas.

One such idea was his method of descent. If $s \in G$ semisimple, then $H = G^s$ is again reductive.

Harish-Chandra descent describes any character Θ_G near s in terms of a new character Θ_H on H. In formal language, he defined a linear map descent

$$(K(G) = \text{virtual reps of } G) \longrightarrow (K(H) = \text{virtual reps of } H.)$$

Endoscopic transfer is Harish-Chandra descent applied in the Langlands L-group.

Examples

To ask about a group *G*, you need first to give it a name.

Lie, Chevalley and Grothendieck solved this problem: (reductive algebraic group G) / algebraically closed $\overline{k} \longleftrightarrow$ based root datum $\mathcal{R}(G) = (X^*, \Pi, X_*, \Pi^{\vee}).$

 X^* and X_* are dual lattices: chars/ cochars of max torus in G.

finite sets $\Pi \subset X^*$ and $\Pi^{\vee} \subset X_*$: simple roots/simple coroots.

Any lattice is isomorphic to \mathbb{Z}^n , so the name $\mathcal{R}(G)$ of G is two finite collections of n-tuples of integers.

Two names are the same iff first collections differ by invertible integer matrix M, and second collections differ by ${}^tM^{-1}$.

Example: GL(2) is given by $\Pi = \{(1, -1)\}, \quad \Pi^{\vee} = \{(1, -1)\}.$

Example: the exceptional group G_2 is given by

$$\Pi = \{(1,0),(0,1)\}, \qquad \Pi^{\vee} = \{(2,-1),(-3,2)\}.$$

A reductive G/\overline{k} named by the (combinatorial) based root datum $\mathcal{R}(G)$: two finite sets of *n*-tuples of integers.

Defining G/k gives action of $\Gamma = \operatorname{Gal}(\overline{k}/k)$ on $\mathcal{R}(G)$.

Concretely: repn of Γ by $n \times n$ integer matrices $\mu(\sigma)$ so

$$\mu(\sigma) \cdot \Pi = \Pi, \qquad {}^t \mu(\sigma)^{-1} \cdot \Pi^{\vee} = \Pi^{\vee},$$

respecting axioms for a based root datum.

Shorthand: action of Γ on the Dynkin diagram of G.

k-forms of *G* are inner if \rightsquigarrow same action of Γ on $\mathcal{R}(G)$.

Example A rank two unitary group/k starts with a separable quadratic extension of k; that is, subgroup $\Gamma_0 \subset \Gamma$ of index two.

Representation of Γ on \mathbb{Z}^2 is

$$M(\sigma) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \ (\sigma \in \Gamma_0), \quad M(\sigma) = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \ (\sigma \notin \Gamma_0)$$

All unitary grps w fixed quad ext form a single inner class.

Axioms for based root data are symmetric in $(X^*, \Pi) \leftrightarrow (X_*, \Pi^{\vee})$.

Dual based root datum is $\mathcal{R}^{\vee} = (X_*, \Pi^{\vee}, X^*, \Pi)$.

Gives reductive algebraic dual group ${}^{\vee}G$ and

L-group ${}^LG = {}^{\vee}G \rtimes \Gamma$, (defined over \mathbb{Z}).

Langlands' insight (local Langlands conjecture):

(analytic rep theory/K of G(k)) \longleftrightarrow (alg geom of $^LG(K)$).

Typically $K = \mathbb{C}$ and k is local.

Complex reps of $G(k) \longleftrightarrow$ complex alg geom of ${}^LG(\mathbb{C})$

Endoscopic (and generalized endoscopic) groups H correspond to subgroups $^EH \subset ^LG$.

By local Langlands, relating $\widehat{H(k)}$ to $\widehat{G(k)}$ means relating alg geom of ${}^LG(\mathbb{C})$ to alg geom of subgroup ${}^EH(\mathbb{C})$.

Easy! But what the hell is ↔?

Generalizing endoscopic transfer

David Vogan

Intro

L-groups

rarameters

Endoscopy

Examples

Parameters

Examples

k p-adic field, $\Gamma = \text{Gal}(\overline{k}/k)$, G conn reductive alg/k.

^LG complex L-group: 1 → $^{\vee}G$ → ^{L}G → $^{\Gamma}$ → 1.

Local Langlands explains irr reps $\widehat{G(k)}$ using LG .

Recall: finite residue field \mathbb{F}_q of $k \rightsquigarrow$ natural surjection

$$1 \to I_k \to \Gamma \to \widehat{\mathbb{Z}} = \overline{\langle \mathsf{Frob} \rangle} \to 1.$$

Inertia subgroup I_k is profinite compact.

Weil group $W_k = (dense)$ preimage in Γ of $\langle Frob \rangle$:

$$1 \to I_k \to W_k \to \mathbb{Z} = \langle \mathsf{Frob} \rangle \to 1.$$

Weil-Deligne group $W'_k = W_k \ltimes \mathbb{C}$: here I_k acts trivially on \mathbb{C} , and Frob acts by multiplication by q.

Langlands parameters

Recall $\Gamma = \operatorname{Gal}(\overline{k}/k)$, and $W_k \subset \Gamma$ is a dense subgroup.

Have two short exact sequences

Langlands parameter is a group homomorphism $\phi': W'_{\mu} \to {}^{L}G$ compatible with exact sequences.

Means $\phi'|_{\mathbb{C}} : \mathbb{C} \to {}^{\vee}G$ (one-param nilp alg subgp), and ϕ' descends to inclusion $W_k \hookrightarrow \Gamma$.

Loc Langlands conj: $\phi' \rightsquigarrow \text{finite L-pkt } \Pi(\phi') \subset \widehat{G}(k)$.

More conjecture:

- 1. L-packets partition $\widehat{G}(k)$;
- 2. $\Pi(\phi')$ depends only ${}^{\vee}G$ -conj class of ϕ' ;
- 3. if G(k) quasisplit, then $\Pi(\phi') \neq \emptyset$.

Generalizing endoscopic transfer

Parameters

David Vogan

Want to translate problems about reps of G(k) to alg geom problems about parameters in LG .

Infl char of ϕ' is $\phi = \phi'|_{W_k}$. Each infl char $\phi \colon W_k \to {}^L G$ extends in finitely many ways to $\phi' \colon W_k' \to {}^L G$: the parameters of infl char ϕ .

Since I_k compact, ${}^{\vee}G^{\phi(I_k)} = \text{centralizer in } {}^{\vee}G \text{ of } \phi(I_k)$ is reductive algebraic in ${}^{\vee}G$.

Preimage Frob in W_k defines $\phi(\widetilde{\text{Frob}}) \in {}^LG$, so semisimple alg aut (indep of Frob) $\sigma_{\phi} = \operatorname{Ad}(\phi(\widetilde{\text{Frob}})) \in \operatorname{Aut}({}^{\vee}G^{\phi(I_k)})$.

 $\sigma_{\phi} \text{ defines } {}^{\vee}\textit{G}^{\phi} = ({}^{\vee}\textit{G}^{\phi(\textit{I}_{k})})^{\sigma_{\phi}}, \text{ twisted pseudolevi of } {}^{\vee}\textit{G}^{\phi(\textit{I}_{k})}.$

 $\mathfrak{n}(\phi) =_{\mathsf{def}} q$ -eigenspace of σ_{ϕ} on ${}^{\vee}\mathfrak{g}^{\phi(I_k)}$, a vector space of nilpotent Lie algebra elements on which ${}^{\vee}G^{\phi}$ acts.

The algebraic geom we want is ${}^{\vee}G^{\phi}$ orbits on $\mathfrak{n}(\phi)$.

 $\mathfrak{n}(\phi)$ is prehomogeneous for ${}^{\vee}G^{\phi}$: finitely many orbits.

Restriction ϕ_I of ϕ' to inertia $I_k \subset \operatorname{Gal}(\overline{k}/k)$ is arithmetic; image is profinite (compact) subgroup of LG :

$$Z_{G}(\phi(I_k)) = {}^{\vee}G^{\phi(I_k)}$$
 reductive algebraic.

An extension ϕ of ϕ_l to W_k (called infinitesimal character) is given by a single element $\phi(\text{Frob})$ of LG .

 $\phi(\widetilde{\mathsf{Frob}})$ defines aut σ_{ϕ} of ${}^{\vee}G^{\phi(I_k)}$, fixed points ${}^{\vee}G^{\phi}$.

q-eigspace of $d\sigma_{\phi} = \text{nilp subspace } \mathfrak{n}(\phi) \subset \mathfrak{g}^{\phi(l_k)}$.

 $\mathfrak{n}(\phi)$ is prehomogeneous for ${}^{\vee}G^{\phi}$.

Parameters ϕ' of infl char $\phi \leftrightarrow^{\vee} G^{\phi}$ orbits O' on $\mathfrak{n}(\phi)$.

irreps of infl char $\phi \overset{\text{LLC}}{\longleftrightarrow} {}^{\vee}G^{\phi}$ -eqvt perv sheaves on $\mathfrak{n}(\phi)$.

L-packet of $\phi' \stackrel{\text{LLC}}{\longleftrightarrow}$ sheaves with support O'.

Generalizing endoscopic transfer

David Vogan

Intro

L-groups

Parameters

Examples

L-subgroup is LG ⊃ EH → Γ , kernel ${}^\vee H$ reductive:

In this setting param ϕ'_H for $^EH \rightsquigarrow$ param ϕ for LG ;

$$\mathfrak{n}(\phi_H)\subset\mathfrak{n}(\phi),\qquad {}^{\vee}H^{\phi}\subset{}^{\vee}G^{\phi}.$$

This is the geometric part of local Langlands functoriality. So relating reps of G to reps of H amounts to relating perv sheaves on $\mathfrak{n}(\phi)$ to perv sheaves on $\mathfrak{n}(\phi)$.

To get strong theorems relating perverse sheaves to a subvariety, need strong hypotheses on the subvariety.

Example is Goresky-MacPherson Lefschetz formula.

Need subvariety = fixed points of an automorphism.

Generalizing endoscopic transfer

David Vogan

Intro

L-groups

Endoscopy

Examples

Langlands params are ${}^{\vee}G$ orbits on (algebraic variety).

So action of $s \in {}^{\vee}G \rightsquigarrow$ automorphism of params.

Endoscopic datum is

- 1. $s \in {}^{\vee}G$ semisimple;
- 2. L-subgroup ${}^E H \subset ({}^L G)^s \subset {}^L G$, with
- 3. $^{\vee}H$ = identity component of $^{\vee}G^s$ reductive in $^{\vee}G$.

Root datum $\mathcal{R}({}^{\vee}H)$ has dual root datum $\rightsquigarrow H/\overline{k}$.

 E H \rightsquigarrow action of Γ = Gal(\overline{k}/k) on root data, \rightsquigarrow inner class of k-forms of H.

Endoscopic group for G = H/k, any form in inner class.

Examples

```
s \in {}^{\vee}G semisimple, L-subgroup {}^{E}H \subset ({}^{L}G)^{s} \subset {}^{L}G, {}^{\vee}H = {}^{\vee}(G^{s})_{0}. Hypotheses imply {}^{E}H open in ({}^{L}G)^{s}. Simplify by assuming {}^{E}H = ({}^{L}G)^{s}. Then (fixed pts of Ad(s) on params) = (params for {}^{E}H).
```

This equality allows application of a Lefschetz formula.

More precisely:

 $tr(s action on perv cohom for ^LG)$

 $= tr(s \text{ action on perv cohom for }^E H.)$

Since s central in EH , right side is easy.

Equality seems to require s to centralize EH .

Generalization seems impossible...

Generalized endoscopic datum is

- 1. $s \in {}^{\vee}G$ semisimple:
- 2. L-subgroup ${}^{E}H \subset {}^{L}G$ normalized by s:
- 3. $\forall H = \text{identity component of } \forall G^s \text{ reductive in } \forall G$;
- 4. quotient action of Ad(s) on $\Gamma = {}^{E}H/{}^{\vee}H$ is trivial.

As for endoscopic groups,

^EH → Galois action on root datum for [∨]H \rightsquigarrow inner class of k-forms of H.

These k forms are generalized endoscopic groups.

Define $\xi : {}^{E}H \rightarrow {}^{\vee}H$ by $\xi(m) = sms^{-1}m^{-1}$ $(m \in {}^{E}H)$.

Equivalently: $Ad(s)(m) = \xi(m)m$.

 ξ measures failure of s to commute with EH , or equivalently failure of of ^{E}H to be endoscopic.

Then ξ factors to $\Gamma = {^EH}/{^{\vee}H}$, values in $Z({^{\vee}H})$.

Precisely: ξ is 1-cocycle of Γ with values in $Z({}^{\vee}H)$.

Generalizing endoscopio transfer

David Vogan

Endoscopy

Endoscopic transfer: should correspond to map sheaves on ${}^{L}G$ params \rightsquigarrow sheaves on ${}^{E}H$ params.

Classical endoscopy: s acts by conjugation on LG params; fixed points are EH params.

Only LG -params in image are ${}^{\vee}G$ -conj to EH -params.

Generalized endoscopy: s still acts on LG -params, but does not fix EH params: $Ad(s)(\phi_H(\gamma)) = \xi(\gamma)\phi_H(\gamma)$.

Try modify $\operatorname{Ad}(s)$ by ξ^{-1} : $(s \star_{\xi}^{?} \phi)(\gamma) = \xi^{-1}(\gamma) \operatorname{Ad}(s)(\phi(\gamma))$. But this is not an action except on ^{E}H params.

Solution: look only at params conjugate to ^EH params:

$${}^{\vee}G \times_{{}^{\vee}H} ({}^{E}H \text{ params}) \to ({}^{L}G \text{ params}), \quad (g, \phi'_{H}) \mapsto \operatorname{Ad}(g) \phi'_{H}.$$

s acts on left space by $s \star_{\xi} (g, \phi'_H) = \operatorname{Ad}(g)(\xi^{-1}\phi'_H)$.

Fixed points of \star_{ξ} are ${}^{E}H$ params.

Following very special case may shed some light. Result stated is Theorem for k archimedean, and in various p-adic cases where local Langlands conj is proven.

Desideratum (Langlands); see Borel, Corvallis volume 2.

$$\phi': W'_k \to {}^L G \rightsquigarrow L$$
-packet $\Pi(\phi') = \{\pi_\tau\}.$

 π_{τ} is irrep of an inner *k*-form of *G*. Suppose that

$$\xi \colon W'_k \to Z(G^{\vee})$$

is a 1-cocycle. Define

$$\xi \cdot \phi' : W'_k \to {}^L G, \qquad (\xi \cdot \phi')(w) = \xi(w)\phi'(w).$$

- 1. The 1-cocycle condition means $\xi \cdot \phi'$ is also a group homomorphism, new Langlands parameter.
- 2. $\bar{\xi} \in H^1(W_k, Z({}^{\vee}G)) \rightsquigarrow \text{smooth char } \gamma_{\bar{\xi}} \text{ of } G(k).$
- 3. $\Pi(\xi \cdot \phi') = \{ \gamma_{\overline{\xi}} \otimes \pi_{\tau} \}.$

Mult param by $Z({}^{\vee}G)$ cocycle tensors G reps with 1-diml rep.

Generalizing endoscopic transfer

David Vogan

IIIIII

L-groups

i didiliotori

Endoscopy

zxampies

Generalizing endoscopic transfer

David Vogan

intro

_-groups

Codeces

Examples

Suppose G/k reductive and P = MN parabolic over k.

Put $X^*(M)$ = ratl chars of M, a Γ -fixed sublattice of $X^*(G)$.

 \rightsquigarrow Γ -fixed sub $\subset X_*({}^\vee G) \rightsquigarrow \Gamma$ -fixed torus ${}^\vee A \subset {}^\vee G$.

 $^{\vee}M =_{\mathsf{def}} {^{\vee}G^{^{\vee}A}}$ is Γ -stable, dual to M: ${^{L}M} \simeq {^{\vee}M} \rtimes \Gamma$.

Generic $s \in {}^{\vee}A \rightsquigarrow ({}^{L}G)^{s} = {}^{L}M \rightsquigarrow$ endoscopic group M.

Endoscopic transfer (reps of M) \rightsquigarrow (reps of G) is Ind_{MN}^G .

Endoscopy is more powerful than parabolic induction.

Allows Z_{LG} (Γ-fixed element), not just Γ-fixed torus.

But endoscopy also misses a lot of interesting subgroups.

Rational Cartan subgrp of *G* is almost never endoscopic.

_ .

Examples

Suppose L any rational Levi subgroup of $G \rightsquigarrow \Gamma$ action on root datum of L.

If G simply connected, easy to find ${}^{L}L \subset {}^{L}G$.

In general, get extended group ${}^{E}L \subset {}^{L}G$.

 $s \in Z(^{\vee}L)$ generic $\leadsto (s, ^{E}L)$ gen endoscopic datum $\leadsto L$ generalized endoscopic for G.

Endoscopic transfer from general ratl Levi *L* should be important generalization of parabolic induction.

Over \mathbb{R} , this is Zuckerman's cohomological induction.

Over a *p*-adic field, this is still a mystery.

Harish-Chandra would tell us to get to work.